FRET-FLIM Investigation of PSD95-NMDA Receptor Interaction in Dendritic Spines; Control by Calpain, CaMKII and Src Family Kinase
نویسندگان
چکیده
Little is known about the changes in protein interactions inside synapses during synaptic remodeling, as their live monitoring in spines has been limited. We used a FRET-FLIM approach in developing cultured rat hippocampal neurons expressing fluorescently tagged NMDA receptor (NMDAR) and PSD95, two essential proteins in synaptic plasticity, to examine the regulation of their interaction. NMDAR stimulation caused a transient decrease in FRET between the NMDAR and PSD95 in spines of young and mature neurons. The activity of both CaMKII and calpain were essential for this effect in both developmental stages. Meanwhile, inhibition of Src family kinase (SFK) had opposing impacts on this decrease in FRET in young versus mature neurons. Our data suggest concerted roles for CaMKII, SFK and calpain activity in regulating activity-dependent separation of PSD95 from GluN2A or GluN2B. Finally, we found that calpain inhibition reduced spine growth that was caused by NMDAR activity, supporting the hypothesis that PSD95-NMDAR separation is implicated in synaptic remodeling.
منابع مشابه
Autophosphorylation-dependent targeting of calcium/ calmodulin-dependent protein kinase II by the NR2B subunit of the N-methyl- D-aspartate receptor.
Activation and Thr286 autophosphorylation of calcium/calmodulindependent kinase II (CaMKII) following Ca2+ influx via N-methyl-D-aspartate (NMDA)-type glutamate receptors is essential for hippocampal long term potentiation (LTP), a widely investigated cellular model of learning and memory. Here, we show that NR2B, but not NR2A or NR1, subunits of NMDA receptors are responsible for autophosphory...
متن کاملActivity-Dependent Growth of New Dendritic Spines Is Regulated by the Proteasome
Growth of new dendritic spines contributes to experience-dependent circuit plasticity in the cerebral cortex. Yet the signaling mechanisms leading to new spine outgrowth remain poorly defined. Increasing evidence supports that the proteasome is an important mediator of activity-dependent neuronal signaling. We therefore tested the role of the proteasome in activity-dependent spinogenesis. Using...
متن کاملCalcium/calmodulin-dependent kinase II facilitated GluR6 subunit serine phosphorylation through GluR6-PSD95-CaMKII signaling module assembly in cerebral ischemia injury.
Although recent results suggest that GluR6 serine phosphorylation plays a prominent role in brain ischemia/reperfusion-mediated neuronal injury, little is known about the precise mechanisms regulating GluR6 receptor phosphorylation. Our present study shows that the assembly of the GluR6-PSD95-CaMKII signaling module induced by brain ischemia facilitates the serine phosphorylation of GluR6 and f...
متن کاملThe effect of noise on CaMKII activation in a dendritic spine during LTP induction.
Activation of calcium-calmodulin dependent protein kinase II (CaMKII) during induction of long-term potentiation (LTP) is a series of complicated stochastic processes that are affected by noise. There are two main sources of noise affecting CaMKII activation within a dendritic spine. One is the noise associated with stochastic opening of N-methyl-d-aspartate (NMDA) receptor channels and the oth...
متن کاملSPIN90 Phosphorylation Modulates Spine Structure and Synaptic Function
The correct rearrangement of postsynaptic components in dendritic spines is important for driving changes of spine structure and synaptic function. SPIN90 plays an essential role in many cellular processes including actin polymerization, endocytosis, growth cone formation and dendritic spine morphogenesis. Here, we demonstrate that SPIN90, which is a binding partner of PSD95 and Shank in spines...
متن کامل